更多>>精华博文推荐
更多>>人气最旺专家

李德润

领域:39健康网

介绍:到魏晋时,有“谕尚书镇牛淆,中秋夕与左右微服泛江”的记载。...

明王

领域:21财经

介绍:日本人有多讨厌韩国人?日本网友的反应固然无厘头,仅仅因为名字被这样揶揄的韩国瑜很无辜,但是这也反映出,日本民间反韩情绪日益高涨的现象。www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来

利来国际w66利来国际w66
本站新公告www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来
u1j | 2019-01-22 | 阅读(350) | 评论(701)
1.2高得率浆概述造纸工业是资源依赖型产业,其生存和发展依靠纤维原料资源的有效供给,其企业2高得率浆在高档纸板芯层中应用技术的优化研究竞争力取决于原料成本、生产技术水平和生产规模效益等制约因素。【阅读全文】
www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来
ev2 | 2019-01-22 | 阅读(865) | 评论(386)
本文研究BOT模式应用于高校后勤设施建设,其目的在于:科学解决高校后勤建设资金难题,提出BOT模式引入高校的风险应对措施,研究BOT模式中存在的问题并采取切实可行的办法应对,将BOT模式应用于山东大学青岛校区的学生公寓项目,验证其收益及可行性,为实际问题提供借鉴。【阅读全文】
jlh | 2019-01-22 | 阅读(266) | 评论(162)
基本格式1、标题2、正文开头:概述情况,总体评价;提纲挈领,总括全文。【阅读全文】
ul0 | 2019-01-22 | 阅读(697) | 评论(360)
福建省10个代表团的200多名选手们努力克服生理障碍,全力赴赛,充分展示了精湛的职业技能、不屈的意志和顽强进取、乐观向上的良好精神风貌。【阅读全文】
jag | 2019-01-22 | 阅读(195) | 评论(780)
安全狗在系统中部署了自主研发的SAAS化公有云安全平台,可以从网络层、网站应用层、系统层多个层面快速与准确识别威胁与攻击,三个层面相互联动进一步增加了黑客入侵的难度,全面提升大赛基础防御的水平。【阅读全文】
1op | 2019-01-21 | 阅读(858) | 评论(317)
*结论:预期结果与实验结果完全符合,假说成立——基因在染色体上!3、验证——测交126132120115实验结果红眼白眼XAXa×XaYP♀♂XAXa红眼XaXa白眼XAY红眼XaY白眼预期结果♂♀♀♂配子XAXaYXaF1*果蝇的4对染色体上却有数百个基因基因在染色体上呈线性排列一条染色体上有许多个基因摩尔根又进一步研究:关于基因与染色体、DNA关系的归纳!*在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的;在减数分裂形成配子的过程中,______会随__________的分开而分离,分别进入两个配子中,独立的随配子遗传给后代。【阅读全文】
r9r | 2019-01-21 | 阅读(666) | 评论(182)
这种“仇恨言论”不论是在日本现实世界还是网络世界,至今存在。【阅读全文】
ce9 | 2019-01-21 | 阅读(87) | 评论(988)
但18世纪殖民地的突然获取,其丰富的资源和广阔的市场,使英格兰摆脱了与中国江南同样艰难的生态制约,就此与世界其他地区“分流”……——彭慕兰《大分流:欧洲、中国及现代世界经济的发展》▲欧洲14、15世纪产生了资本主义萌芽,中国资本主义萌芽的时间也差不多,但欧资本主义迅速发展成为资产阶级革命的物质基础,而中国却一直萌而不发,试分析原因。【阅读全文】
www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来
r0m | 2019-01-21 | 阅读(113) | 评论(848)
为什么木条、硫分别在空气里和氧气里燃烧的现象不同它说明了什么——氧气的含量越高,燃烧越剧烈。【阅读全文】
ug0 | 2019-01-20 | 阅读(78) | 评论(518)
对于曹冲的母亲,是一位只在历史上留下一笔的所谓“环夫人”,但却为曹操生有冲,据,宇,三子,有这点可以看出,曹操对于这位环夫人还是喜欢的,但环夫人的身世,生死都是谜,有待考证。【阅读全文】
uqh | 2019-01-20 | 阅读(612) | 评论(350)
(2)研究方法:同位素标记法蛋白质的组成元素:DNA的组成元素:C、H、O、N、SC、H、O、N、P(标记32P)(标记35S)①标记噬菌体方法:在分别含有放射性同位素32P和35S的培养基中培养细菌分别用上述细菌培养T2噬菌体,制备含32P的噬菌体和含35S的噬菌体侵入别的细菌注入核酸合成核酸和蛋白质吸附装配释放噬菌体侵染细菌的过程:它侵染大肠杆菌后,如何合成自身组成成分(DNA和蛋白质)?谁提供原料场地?噬菌体侵染细菌实验(2)T2噬菌体增殖(复制式繁殖)模板:噬菌体DNA合成DNA的原料:大肠杆菌提供的四种脱氧核苷酸原料:大肠杆菌的氨基酸场所:大肠杆菌核糖体合成蛋白质离心被35S标记的噬菌体上清液的放射性很高在新的噬菌体中没有35S离心被32P标记的噬菌体上清液的放射性很低(2)噬菌体侵染细菌的实验搅拌使与细菌分离沉淀物的放射性很高在新的噬菌体中有32P搅拌使与细菌分离步骤:标记、侵染、搅拌、离心、检测和记录结果阅读教材P44-P45的内容问题1.科学家为什么把噬菌体作为研究DNA是遗传物质的材料问题2.科学家是采用什么方法进行研究的问题3.用35S,32P分别标记什么?为什么这么标记?问题4.搅拌,离心的目的分别是什么?上清液中的是什么,沉淀物中的是什么?(T2噬菌体只有DNA和蛋白质两种化学物质组成)(放射性同位素标记法)用35S标记蛋白质,32P标记DNA。【阅读全文】
els | 2019-01-20 | 阅读(570) | 评论(276)
PAGE考点42恒过定点的直线要点阐述要点阐述含参的直线方程,大都可以改写成的形式,由直线的点斜式方程可知,直线必定过点,利用直线恒过定点可以妙解数学问题.典型例题典型例题【例】若直线l∶y=kx-eq\r(3)与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角α的取值范围是________.【答案】30°<α<90°【易错易混】直线从CA运动到CB,是直线的斜率k>eq\f(\r(3),3),对应的倾斜角为(30°,90°),不包括90°.小试牛刀小试牛刀1.若,直线y+2=k(x–1)恒过一个定点,则这个定点的坐标为()A.(1,–2)B.(–1,2)C.(–2,1)D.(2,1)【答案】A【解析】y+2=k(x–1)是直线的点斜式方程,它经过定点为(1,–2).故选A.【规律方法】解含有参数的直线恒过定点的问题.方法1:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.方法2:分项整理,含参数的并为一项,不含参数的并为一项,整理成等号右边为0的形式,然后含参数的项和不含参数的项分别为零,解此方程组得到的解即为已知直线恒过的定点.2.若,则直线必经过的一个定点是(  )A.(1,1)B.(–1,1)C.(1,–1)D.(–1,–1)【答案】C【解析】由,得,故可化为,所以必经过的一个定点是(1,–1).3.三条直线:,,构成三角形,则的取值范围是(  )A.B.C.D.,【答案】A【秒杀技】若a=1,或a=–1则有两条直线平行,构不成三角形,选出答案A.4.直线y=mx+2m【答案】(-2,1)【解析】把直线方程化为点斜式y-1=m(x+2).显然当x=-2时y=1,即直线恒过定点(-2,1).5.直线的系数,满足,则直线必过定点________.【答案】(6,–8)【解析】∵,∴,∴.∴,∴,解方程组得∴定点为(6,–8).考题速递考题速递1.直线,当变化时,所有直线都通过定点(  )A.(0,0)B.(0,1)C.(3,1)D.(2,1)【答案】C【解析】直线方程整理为k(x–3)–(y–1)=0,过定点(3,1).2.不论怎么变化,直线恒过定点(  )A.(1,2)B.(–1,–2)C.(2,1)D.(–2,–1)【答案】B3.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).4.已知直线l:5ax-5y-a+3=0.(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线不经过第二象限,求a的取值范围.【解析】(1)将直线l的方程整理为y-eq\f(3,5)=a(x-eq\f(1,5)),∴l的斜率为a,且过定点A(eq\f(1,5),eq\f(3,5)).而点A(eq\f(1,5),eq\f(3,5))在第一象限,故l过第一象限.∴不论a为何值,直线l总经过第一象限.(2)直线OA的斜率为k=eq\f(\f(3,5)-0,\f(1,5)-0)=3.∵l不经过第二象限,∴a≥3.数学文化数学文化蒲丰试验一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了.蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142.蒲丰说:“这个数是π的近似值.每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确.”这就是著名的“蒲丰试验”.【阅读全文】
tpl | 2019-01-20 | 阅读(35) | 评论(317)
我们想一想,现在国在那里?政权在那里?我们已经成了亡国之民了!——孙中山《民报》创刊周年大会上的演说“我们推倒满洲政府,从驱逐满人那一面说是民族革命,从颠覆君主政体那一面说是政治革命,并不是把来分作两次去做。【阅读全文】
lho | 2019-01-19 | 阅读(887) | 评论(841)
曹冲称象;曹冲称象;ɡǎnchènɡ一杆秤;ɡǎnchènɡ一杆秤;秤杆;;曹冲称象官员四根柱子议论多重一杆秤砍树画线为止重量;;;;;;说一说课文写了什么?;古时候有个大官,叫曹操。【阅读全文】
88f | 2019-01-19 | 阅读(650) | 评论(691)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
共5页

友情链接,当前时间:2019-01-22

w66.C0m 利来国际娱乐w66 w66利来娱乐 利来国际手机版 w66.
利来国际娱乐w66 利来国际在钱服务 利来国际娱乐老牌 利来国际www.w66com 利来最给利的网站
利来国际公司 利来国际手机版 利来国际w66平台 w66利来国际老牌 利来娱乐网
w66利来国际老牌 利来娱乐城 利来国际官方网站 利来娱乐ag旗舰厅 利来国际官网
会宁县| 田林县| 彭水| 新宁县| 宁安市| 湘阴县| 尤溪县| 安新县| 宁国市| 黑龙江省| 长顺县| 剑川县| 高安市| 富宁县| 集贤县| 长丰县| 杭州市| 嫩江县| 海淀区| 义乌市| 临城县| 鄂伦春自治旗| 疏勒县| 贵南县| 祁东县| 永康市| 南澳县| 中超| 莲花县| 扶绥县| 南皮县| 明光市| 巨野县| 鄂州市| 永德县| 黄龙县| 丹凤县| 舞钢市| 扬州市| 万年县| 宜城市| http://m.29836979.cn http://m.86316095.cn http://m.43097072.cn http://m.70740921.cn http://m.98618099.cn http://m.78102474.cn